Tronc commun ST Ingénieur 2ème année Analyse 3

TD 1 Analyse vectorielle

Exercice 1.

- 1. Soit le champ scalaire défini sur \mathbb{R}^3 par $f(M) = f(x, y, z) = 3x^2y y^3z$. Calculer $\overrightarrow{\text{grad}} f(M)$ au point (1, -2, -1).
- 2. Soit le champ de vecteurs défini sur \mathbb{R}^3 par $\overrightarrow{F}(M) = (x^2z, -2y^3z^2, xy^2z)$. Calculer div $\overrightarrow{F}(M)$ au point (1, -1, 1).
- 3. Soit le champ de vecteurs défini sur \mathbb{R}^3 par $\overrightarrow{F}(M) = (xz^3, -2x^2yz, 2yz^4)$. Calculer $\overrightarrow{rotF}(M)$ au point (1,1,0).

Exercice 2.

1. On définit le champ de vecteurs $\overrightarrow{V} = (ax, ay, az)$ où a est une constante. Calculer div \overrightarrow{V} , représenter le champ de vecteurs pour a > 0, puis pour a < 0. En déduire une interprétation géométrique de la divergence.

Exercice 3.

- 1. Calculer la circulation du champ vectoriel $\overrightarrow{V}(x,y) = (3x, x+y)$ le long du cercle C de centre 0 et de rayon 1, parcouru dans le sens positif.
- 2. Meme question pour le champ vectoriel $\vec{F}(x,y,z)=(yz,zx,xy)$ le long de l'hélice H paramétrée par $x=\cos t,\ y=\sin t$

et z = t où t varie de 0 à $\frac{\pi}{4}$.

Exercice 4. Soit le champ vectoriel $\overrightarrow{V} = (y^2 \cos x, 2y \sin x + e^{2z}, 2ye^{2z})$.

- 1. Montrer que ce champ est un champ de gradient.
- 2. Déterminer le potentiel U dont dérive ce champ sachant qu'il vaut 1 à l'origine.
 - 3. Quelle est la circulation de ce champ de A = (0,1,0) à $B = (\pi/2,3,0)$.

Exercice 5.

1. Montrer que \overrightarrow{F} dérive d'un potentiel scalaire et trouver les potentiels dont il dérive dans les cas suivants.

1a.
$$\overrightarrow{F} = (3x^2 + 3y - 1, z^2 + 3x, 2yz + 1).$$

1b.
$$\overrightarrow{F} = \left(\frac{1}{y} - \frac{z}{x^2}, \frac{1}{z} - \frac{x}{y^2}, \frac{1}{x} - \frac{y}{z^2}\right)$$
 défini sur $U = \left\{(x, y, z) \in \mathbb{R}^3, x > 0, y > 0, z > 0\right\}$.

2. Montrer que $\overrightarrow{V} = (xy^2 - x^3y) \overrightarrow{k}$ admet un potentiel vectoriel et le déterminer.

Exercice 6

1. En utilisant la formule de Green, calculer $I = \iint_S xy dx dy$ où

$$S = \{(x; y) \in \mathbb{R}^2, x \ge 0, y \ge 0, x + y \le 1\}.$$

2. Vérifier la formule de Green dans le plan pour $\oint_C (xy + y^2) dx + x^2 dy$, où C est la courbe fermée délimitée par y = x et $y = x^2$.

Exercice 7.

1. Calculer $\oint_C (y - \sin x) dx + \cos x dy$, où C est le triangle de sommets (0,0), $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},1)$

1.a. directement.

1.b. en appliquant la formule de Green.

2. a) Dessiner le domaine D, délimité par les courbes $y = x^2$ et $x = y^2$.

b. Calculer directement $\oint_C (2xy^2 - x^2) dx + (x + y^2) dy$, où C est le bord orienté du domaine D.

c. Retrouver le résultat en utilisant la formule de Green.

Exercice 8. Soit le champ vectoriel $\overrightarrow{F} = \frac{-y}{x^2 + y^2} i + \frac{x}{x^2 + y^2} j$.

1. Calculer $\nabla \wedge \overrightarrow{F}$. Est ce que \overrightarrow{F} dérive d'un potentiel scalaire?

2. Evaluer $\oint_C \overrightarrow{F}.\overrightarrow{dr}$ où C est une courbe quelconque fermée et expliquer le resultat.

Exercice 9.

Calculer les intégrales suivantes en appliquant la formule de Stokes puis retrouver le résultat par calcul direct.

1.

$$I = \int_{C} (y+z) \, dx + (z+x) \, dy + (x+y) \, dz$$

où la courbe C est l'intersection de la sphère $x^2+y^2+z^2=R^2$ et le plan x+y+z=0, on suppose que C est orientée positivement.

$$J = \int_C -y^3 dx + x^3 dy - z^3 dz$$

où la courbe C est l'intersection du cylindre $x^2 + y^2 = 1$ et le plan x + y + z = 1, on suppose que C est orientée positivement.

Exercice 10. Soit le champ vectoriel $\overrightarrow{V} = x^2i + y^2j + z^2k$ et la surface S composée du cylindre d'équation $0 \le z \le b$ (a > 0, b > 0) et des deux disques de rayon a aux niveaux z = 0 et z = b.

1. Calculer directement le flux de \overrightarrow{V} à travers S.

2. Calculer le flux de \overrightarrow{V} à travers S en utilisant la formule d'Ostrogradski.

Exercice 11. (pour fixer les idées)

Les opérations suivantes ont-elles un sens? Si oui, définissent-elles un champ scalaire ou un champ vectoriel?

- (a) Gradient de la divergence d'un champ vectoriel.
- (b) Gradient de la divergence d'un champ scalaire.
- (c) Divergence du gradient d'un champ scalaire.
- (d) Divergence du gradient d'un champ vectoriel.
- (e) Divergence de la divergence d'un champ scalaire.
- (f) Rotationnel de la divergence d'un champ vectoriel.